Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale
نویسندگان
چکیده
Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns.
منابع مشابه
Nutrient subsidies to belowground microbes impact aboveground food web interactions.
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial commu...
متن کاملThe effects of insects, nutrients, and plant invasion on community structure and function above-and belowground
Soil nutrient availability, invasive plants, and insect presence can directly alter ecosystem structure and function, but less is known about how these factors may interact. In this 6-year study in an old-field ecosystem, we manipulated insect abundance (reduced and control), the propagule pressure of an invasive nitrogen-fixing plant (propagules added and control), and soil nutrient availabili...
متن کاملSYNTHESIS AND EMERGING IDEAS Responses of soil microorganisms to resource availability in urban, desert soils
Terrestrial desert ecosystems are strongly structured by the distribution of plants, which concentrate resources and create islands of fertility relative to interplant spaces. Atmospheric nitrogen (N) deposition resulting from urbanization has the potential to change those spatial patterns via resource inputs, resulting in more homogeneous soil resource availability. We sampled soils at 12 dese...
متن کاملThe variable eVects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-Weld ecosystem
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-Weld ecosystem. In 2004, we established 36 experimental plots in which we manipulated s...
متن کاملSoil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability
BACKGROUND Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. METHODOLOGY/PRINCIPAL FINDINGS To examine the effects of C and water additions on soil microbial properties and plant growth, we...
متن کامل